Ref No:

< Sri Krishna Institute of Technology, Bangalore>

COURSE PLAN

Academic Year 2019

Program:	B E – Electrical and Electronics Engineering
Semester :	3
Course Code:	18EE36
Course Title:	ELECTRICAL AND ELECTRONIC MEASUREMENTS
Credit / L-T-P:	4 / 4-0-0
Total Contact Hours:	50
Course Plan Author:	Vinutha S

Academic Evaluation and Monitoring Cell

< Sri Krishna Institute of Technology #29, Hesaraghatta Main Road Chimney Hills, Chikkabanavara Post> <Bangalore– 560090,Katakana, India.> <Phone / Fax :+91-STD-080 > <Web: skit.org.in, e-mail: >

Table of Contents

A. COURSE INFORMATION	4
1. Course Overview	4
2. Course Content	4
3. Course Material	
4. Course Prerequisites	6
5. Content for Placement, Profession, HE and GATE	6
B. OBE PARAMETERS	6
1. Course Outcomes	6
2. Course Applications	7
3. Mapping And Justification	7
4. Articulation Matrix	8
5. Curricular Gap and Content	8
6. Content Beyond Syllabus	9
C. COURSE ASSESSMENT	9
1. Course Coverage	9
2. Continuous Internal Assessment (CIA)	10
D1. TEACHING PLAN - 1	
Module - 1	
Module – 2	
E1. CIA EXAM – 1	12
a. Model Question Paper - 1	
b. Assignment -1	13
D2. TEACHING PLAN - 2	16
Module – 3	
Module – 4	17
E2. CIA EXAM – 2	18
a. Model Question Paper - 2	
b. Assignment – 2	
D3. TEACHING PLAN - 3	22
Module – 5	
E3. CIA EXAM – 3	24
a. Model Question Paper - 3	24
b. Assignment – 3	24
F. EXAM PREPARATION	26
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	29
1. TLPA Parameters	
2. Concepts and Outcomes:	

Note : Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	EE
Semester:	3	Academic Year:	2019
Course Title:	ELECTRICAL AND ELECTRONIC MEASUREMENTS	Course Code:	18EE36
Credit / L-T-P:	4-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	50 Hours	SEE Marks:	60 Marks
CIA Marks:	40 Marks	Assignment	1 / Module
Course Plan Author:	Vinutha S	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target : %	SEE Target:	%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content \checkmark Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	Teachi	Identified Module	Blooms
ule		ng	Concepts	Learning
		Hours		Levels
1	Measurement of Resistance: Wheatstone's bridge, Sensitivity, Limitations. Kelvin's double bridge. Earth resistance measurement by fall of potential method and by using Megger. Measurement of Inductance and Capacitance: Sources and detectors, Maxwell's inductance bridge, Maxwell's inductance and capacitance bridge, Hay's bridge, Anderson's bridge, Desauty's bridge, Schering bridge. Shielding of bridges. Problems.	10 (3, 11)	-Measurement of Resistance - Measurement of Inductance and Capacitance	Appllying L3 Appllying L3
2	 Measurement of power and energy Torque expression, Errors and minimization, UPF and LPF wattmeters. Measurements of real and reactive power in 3 phase circuits. Review of Induction type energy meter construction and operation (No question shall be set from the review portions)]. Errors, adjustments and calibration of single and three phase energy meter Problems. Measurement of power factor and frequency Construction and operation of single-phase and three phase dynamometer type power factor meter. Weston frequency me ter and phase sequence indicator 	10 (6, 5)	-Energy meter -Power factor -frequency meter	Applying L3, Applying L3, Applying L3
3	Extension of Instrument Ranges: Desirable features of ammeters and voltmeters. Shunts and multipliers. Construction and theory of instrument transformers, Desirable characterises, Errors of CT and PT. Turns compensation, Illustrative examples, Silsbee's method of testing CT. Magnetic measurements: Introduction, Measurement of flux/ flux density, Magnetising force and leakage factor.	10 (8, 4)	-Extension Instrument range -Magnetic measurement	Analyzing L4, Analyzing L4
4	Electronic and digital Instruments: Introduction. Essentials of electronic instruments, Advantages of electronic instruments. True rms reading voltmeter. Electronic multimeters. Digital voltmeters (DVM) - Ramp type DVM, Integrating type DVM, Continuous –	10 (4, 8)	-Electronic instrument -Digital devices	Applying L3, Applying L3

5	balance DVM and Successive - approximation DVM. Q meter Principle of working of electronic energy meter (block diagram treatment), Extra features offered by present day meters and their significance in billing Display Devices: Introduction, Character formats, Segment displays, Dot	10 (6, 5)	Display device	Analyzing L4,
	matrix displays, Bar graph displays. Cathode ray tubes, Light emitting diodes, Liquid crystal displays, Nixes, Incandescent, Fluorescent, Liquid vapour and Visual displays. Display multiplexing and zero suppression. RecordingDevices: Introduction, Strip chart recorders, Galvanometer recorders, Null balance recorders, Potentiometer type recorders, Bridge type recorders, LVDT type recorders, Circular chart and X – Y recorders. Magnetic tape recorders, Direct recording, Frequency modulation recording, Pulse duration modulation recording, Digital tape recording, Ultraviolet recorders. Biomedical recorders, Electro Cardio Graph (ECG),Electroencephalograph, Electromyographg. Noise in reproduction.		Recording devices	Analyzing L4
-	Total	50	-	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

Modul	Details	Chapters	Availability
es		in book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
	Electrical and Electronic Measurements and Instrumentation, A. K.	1, 2, 3, 4,	In Lib
	Sawhney, Dhanpatrai and Sons, New Delhi.	5	
	A Course in Electronics and Electrical Measurements and		In Lib
	Instrumentation J. B. Gupta Katson Books 2013 Edition		
	Electrical and electronic Measurements and Instrumentation Er.R.K.		In Lib
	Rajput S Chand 5th Edition 2012		
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
	Electrical Measuring Instruments and MeasurementsS.C. Bhargava BS		In Dept
	Publications 2013		
	Modern Electronic Instrumentation and Measuring Techniques, Cooper		In Lib
	D. and A.D. Heifrick, PHI, 2009 Edition.		1.1.1
	Electronic Instrumentation and Measurement, David A. Bell, Oxford		in Lid
	Publication, 2nd Edition, 2009.		Les I. He
	Electrical Measurements and Measuring Instruments, Golding and		IN LID
<u> </u>	Widdles, Pilitian		
	between a service of the service of	-	-
	https://www.youtube.com/watch?v=uygtz_cdkQim		
	Lecture Series on Power System Generation, Transmission and		
<u> </u>	biting (Average) outube com (watch?), adderue 4 iA		
02	Inculators for Overhead Lines		
<u>C2</u>	https://www.voutube.com/watch?v=lrtigbP5ca8		
03	https://www.youtube.com/watch?v=dhmV0IBcw0LL		
	Transmission Line parameters		
C4	https://www.youtube.com/watch?v=lr1jgbR5ca8		
	https://www.youtube.com/watch?v=dhmY0IBcw0U		

	Transmission Line parameters		
C5	https://nptel.ac.in/courses/108102047/12		
	Performance of transmission lines		
C6	https://nptel.ac.in/courses/108102047/12		
	Performance of transmission lines		
C7	https://nptel.ac.in/courses/108105104/21		
	Disruptive critical voltage for single and three phase transmission lines,		
	Formula for disruptive critical voltage, Visual critical voltage		
C8	https://nptel.ac.in/courses/108102047/18		
	Underground cable		
C9	https://www.youtube.com/watch?v=_iz8ZkjD7z8		
	Distribution Systems		
C10	https://nptel.ac.in/courses/108107112/3		
	Distribution Systems		
<u> </u>			
D	Software Tools for Design	-	-
D	Software Tools for Design	-	-
D	Software Tools for Design Auto CAD	-	-
D	Software Tools for Design Auto CAD	-	-
D	Software Tools for Design Auto CAD	-	-
D	Software Tools for Design Auto CAD	-	-
	Software Tools for Design Auto CAD	-	-
D 1 	Software Tools for Design Auto CAD Recent Developments for Research	-	- -
D 1 	Software Tools for Design Auto CAD Recent Developments for Research	-	-
D 1 	Software Tools for Design Auto CAD Recent Developments for Research https://ieeexplore.ieee.org/document/7836860	- -	-
D 1 E	Software Tools for Design Auto CAD Recent Developments for Research https://ieeexplore.ieee.org/document/7836860	-	- -
D 1 	Software Tools for Design Auto CAD Recent Developments for Research https://ieeexplore.ieee.org/document/7836860	-	-
D 1 	Software Tools for Design Auto CAD Recent Developments for Research https://ieeexplore.ieee.org/document/7836860 Others (Web, Video, Simulation, Notes etc.)	-	- -
D 1 E F 1	Software Tools for Design Auto CAD Recent Developments for Research https://ieeexplore.ieee.org/document/7836860 Others (Web, Video, Simulation, Notes etc.)	- -	- -
D 1 E F 1	Software Tools for Design Auto CAD Recent Developments for Research https://ieeexplore.ieee.org/document/7836860 Others (Web, Video, Simulation, Notes etc.)	- -	- -

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Mc	d Course	Course Name	Topic / Description	Sem	Remarks	Blooms
ule	s Code					Level
1	18EL13	Basic Electrical Engineering	To understand the concepts of current, power, resistance,voltage	1		L2

Students must have learnt the following Courses / Topics with described Content

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level
3	Analysis of current transformer and	Advanced Topics		L3,L4
	potential transformers			
4	Electronic meters- multimeters,	Advanced Topics		L5
	energymeters			
5	Demonstration on display devices	Advanced Topics		L3

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod	Course	Course Outcome	Teach.	Concept	Instr	Assessme	Blooms'
ules	Code.#	At the end of the course, student	Hours		Method	nt	Level
		should be able to				Method	
1		Demonstrate bridge balancing	4	Resistance	Lecture	Slip Test	L3
	18EE36.1	technique to measure the		bridge			Apply
		unknown resistance.					
1	18EE36.2	Analyze the measurement of	06	Inductance	Lecture	Assignme	L4
		Inductance, Capacitor by maxwell's		capacitanc		nt	Analyze
		Desautys bridge.		e bridges			
				_			
2	18EE36.3	Demonstrate measurement of	06	Energy	Lecture	Assignme	L4
		energy using energy meter and		meter		ni and Slip Toct	Anatyze
		standard values				Sub Lesi	
2	18FF36 /	Analyze the measurement of	04	Power	Lecture	Assianme	3
-	102230.4	power factor, frequency by using	~~	factor	/ PPT	nt	vlaaA
		dynamo meter and Weston		frequency			1-17
		frequency meter.		meter			
3	18EE36.5	Illustrate the extension ranges of	05	Extension	Lecture	Slip test	L4
		instrument by instrument		Instrument			Analyze
		transformer.		range			
	495506.6	Apply the magnetic massivement	05	Magnatia	Looturo	Accierana	
3	105530.0	Apply the magnetic measurement	05	magnetic	Lecture	Assignme	L3
		of flux using magnetic meter.		ent	Tutorial	110	
					ratoriat		
4	18EE36.7	Apply the principle and working of	05	Electronic	Lecture	Assignme	L5
		Electronic meter		instrument		nt and	Evaluate
						Slip Test	
4	18EE36.8	Analyze the measurement of	05	Digital	Lecture	Assignme	L2
		voltage by using digital meter.		meters		nt	
5	18EE36.9	Demonstrate the display devices of	05	Display	Lecture	Assignme	L2
		LED,LCD, liquid vapour devices.		device		nt	
					-		
5	18EE36.10	Illustrate the working of recording	05	Recording	Lecture	Assignme	L4
				devices		nt	Analyze
-	-	Iotal	50	-	-	-	L2-L5

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to ...

Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	Wheatstone bridge along with operational amplifier can be used to measure the	CO1	L2
	physical parameters like light temperature strain.		
1	Able to understand various AC bridges and their applications	CO2	L2
2	Knowledge of digital energy meters	CO3	L3
2	Analyze the measurement of power factor, frequency by using dynamo meter and	CO4	L3
	Weston frequency meter.		
3	Illustrate the extension ranges of instrument by instrument transformer.	CO5	L4

3	Apply the magnetic measurement of flux using magnetic meter.	CO6	L4
4	Apply the principle and working of Electronic meter	CO7	L2
4	Analyze the measurement of voltage by using digital meter.	CO8	L4
5	Demonstrate the display devices of LED,LCD, liquid vapour devices.	COg	L4
5	Illustrate the working of recording devices .	CO10	L2

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Mod	Мар	ping	Mapping	Justification for each CO-PO pair						
ules			Level		el					
-	со	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-					
1	CO1	PO1		Basic knowledge on bridges	L2					
1	CO1	PO2		Analysing the method of measuring unknown resistance	L4					
1	CO2	PO1		Basic knowledge on AC bridges	L2					
1	CO2	PO2		Analysing the method of measuring unknown inductance and capacitance	L4					
2	CO3	PO1		Basic knowledge on measurement of energy	L2					
2	CO3	PO4		Compare and calibrate the enrgy meter with standard values	L4					
2	CO4	PO1		Fundamental of frequency and power factor	L2					
2	CO4	PO2		Analyse the measurement of power factor and frequency by modern La neters						
3	CO5	PO1		Fundamental knowledge on CT and PT						
3	CO5	PO3		Development of CT and PT for extension of range of ammeters and volmeters	L3					
3	CO6	PO1		Knowledge on magnetic flux, magnetic field	L2					
4	CO7	PO1		Applying knowledge of science and engineering to overcome the problems associated with conventional meters by using electronic meters	L3					
4	CO8	PO1		Basic knowledge on digital meters	L2					
4	CO8	PO2		Analyse the problems associated with analog voltmeters	L4					
4	CO8	PO5		Selecting appropriate digital meters to overcome the problems associated with analog meters	L3					
5	CO9	PO1		Knoweldge on operation of LED LCD L2						
5	CO9	PO5		Replacing the conventonal displays by modern IT tools	L3					
5	CO10	PO1		Basic knowledge on recording systems.	L2					

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes	Program Outcomes								-							
Mod	CO.#	At the end of the course	PO1	PO	PS	PS	PS	Lev										
ules		student should be able to		2	3	4	5	6	7	8	9	10	11	12	O1	02	О3	el
1		Demonstrate bridge balancing	Х	Х														L3
	18EE36.1	technique to measure the																
		unknown resistance.																
1	18EE36.2	Analyze the measurement of	X	X														L4
		Inductance, Capacitance by																
		maxwell's Desautys bridge.																
2	18EE36.3	Demonstrate measurement of	x			Х												L4
		energy using energy meter and																

		calibrate the error by compare with standard values.												
2	18EE36.4	Analyze the measurement of power factor, frequency by using dynamo meter and Weston frequency meter.	Х	х										L3
3	18EE36.5	Illustrate the extension ranges of instrument by instrument transformer.	х		Х									L4
3	18EE36.6	Apply the magnetic measurement of flux using magnetic meter.	Х											L3
4	18EE36.7	Apply the principle and working of Electronic meter	Х											L5
4	18EE36.8	Analyze the measurement of voltage by using digital meter.	Х	Х			Х							L2
5	18EE36.9	Demonstrate the display devices of LED,LCD, liquid vapour devices.	Х				X							L2
5	18EE36.10	Illustrate the working of recording devices .	Х											L4
-	15EE81	Average attainment (1, 2, or 3)												-
-	PO, PSO	1.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions; 4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and												
		Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork; 10.Communication; 11.Project Management and Finance; 12.Life-long Learning; S1.Software Engineering; S2.Data Base Management; S3.Web Design												

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
1					
2					
3					
4					
5					

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod ules	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach.		No. o	f quest	ion in	Exam		CO	Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Units and Dimensions	10	2	-	-	1	1	2	CO1, CO2	L3, L4
	Measurement of Resistance,									
	inductance and Capacitance:									
2	Measurement of power and energy	10	2	-	-	1	1	2	CO3, CO4	L4L4
3	Measurement of power factor	10	-	2	-	1	1	2	CO5, CO6	L3, L4
	frequency									
4	Electronic and digital Instruments	10	-	2	-	1	1	2	CO7, C08	L2, L3
5	Display Devices, recording Devices	10	-	-	4	1	1	2	CO9, CO10	L2, L4
-	Total	50	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	CO	Levels
ules		Marks		
1, 2	CIA Exam – 1	30	CO1, CO2, CO3, CO4	L3, l4, l4
3, 4	CIA Exam – 2	30	CO5, CO6, CO7, Co8	L3, L4L2, L3,
5	CIA Exam – 3	30	C09, CO10	L2, L4
1, 2	Assignment - 1	10	CO1, CO2, CO3, CO4	L3, l4, l4
3, 4	Assignment - 2	10	CO5, CO6, CO7, C08	L3, L4L2, L3,
5	Assignment - 3	10	C09, CO10	L2, L4
1, 2	Seminar - 1		-	-
3, 4	Seminar - 2		-	-
5	Seminar - 3		-	-
1, 2	Quiz - 1		-	-
3, 4	Quiz - 2		-	-
5	Quiz - 3		-	-
1 - 5	Other Activities – define – Slip test	-	CO1 to Co9	L2, L3, L4
	Final CIA Marks	40	-	

D1. TEACHING PLAN - 1

Module - 1

Title:	Units and dimensions Measurement of Resistance	Appr	10 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Demonstrate bridge balancing technique to measure the unknown resistance.	CO1	L3
2	Analyze the measurement of Inductance, Capacitor by maxwell's Desautys	CO2	L4
	bridge.		
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Measurement of Resistance: Wheatstone's bridge	C01	L3

2	Sensitivity Limitations	C:01	13
2	Kelvin's double bridge	Co1	<u> </u>
	Earth resistance measurement by fall of notantial method		L2
4	Earth resistance measurement by using Maggar	C01	L3
5	Earth resistance measurement by using Megger.	C01	L3
6	Sources and detectors, Maxwell's inductance bridge,	C02	L4
7	Maxwell's inductance and capacitance bridge,	<u>C02</u>	L4
8	Desauty's bridge,	C02	L4
9	Hay's bridge, Anderson's bridge	C02	L4
10	Schering bridge. Shielding of bridges. Problems.	C02	L4
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to \ldots	-	-
1	Bridges are used to measure the resistance.	CO1	L3
2	Bridges are used to measure the Inductance	CO2	L4
	•		
d	Review Questions	-	-
_	The attainment of the module learning assessed through following guestions	-	-
1	With a neat sketch explain the working of a megger	CO1	1
2	Explain kelvin's bridge?	CO1	3
- 2	Explain the fall of potential of measurement of earth resistance	CO1	2
	Derive the expression for the measurement of unknown resistance using	CO1	2
4	Kelvin's double bridge How the effect of connecting lead resistance is	001	L.)
	eliminated in this arrangement		
5	Write short notes on Meager	CO1	12
6	Write briefly on the significance of shields used in ac bridge circuit. Hence	CO1	12
	discuss on the shielding of resistors and canacitors of the circuit	001	L.)
7	Explain how a megger is used for the measurement of earth resistance	CO1	10
/ 8	Define veltage sensitivity of a galvanemeter and hence obtain an expression		
0	for whotstopo's bridge sensitivity Whon will be Shippying maximum?	002	L3
	Ctate and evolution consitiuity of whetstone's bridge?	<u> </u>	14
9	State and explain sensitivity of wheistone's bhuge?	<u>CO2</u>	L4
10	Explain maxwell's bridge?	<u> </u>	
11	Explain the Importance of Wheatstone bridge?	001	L4
12	Explain the Capacitance Comparison Bridge?	002	L3
13	Explain the Maxwell's bridge?	CO2	L4
	Explain the Wagner's earth connection?		
14	Deriving equation for resistance is Hay's bridge, the following expression is	CO2	L3
	obtained. R = w2R1R2e2/ 1+w2R22C Find whether the equation is		
	dimensionally correct or not. Incase there is an error find the error and correct		
	equation accordingly		
15	Derive the dimensional equation for resistance R, inductance and capacitance	CO2	L4
	C. nence check for dimensionally correctness of the expression below		
	optained for inductance from ac bridge measurements , point out the error, if		
	any in the expression and suggest the required correction that makes the		
46	expression dimensionally valid L = C (R3/R4) (R2+R4 + R2R4)	<u> </u>	1.4
10	Expression for eady current loss p/meter length of wire may be written as p	CU1	L1
	u ra bino uc py where i = frequency, Bin = Max. Itux density, d=		
	μ americal or wire, μ - resistivity or material. Find the values a, p,c,and g using μ MTL system D, is to provide a set		
47	L,M, I, I SYSTEITI M = K ID DITID UC PU	<u> </u>	1.
1/	berive the balance equations of the Schering bridge circuit configuration used	CU1	L4
	nor measurement or capacitatices and hence derive at the expression for loss		
10	angle of the test capacitor. Draw the phasor diagram at balance.	<u> </u>	
18	Derive the expression for the measurement of capacitance and loss angle of a	CU2	L3
	cossy capacitor using schenning bridge. Draw the phasor diagram at balance		
	voltages		
10	Vullayes	<u> </u>	
19	WHILE SHOLL HOLES OF SOULCE AND DELECTORS	002	L3
-	Evnorionaaa		
e	Experiences	-	-
1		CO1	L2

2		
3		
4	CO2	L3
5		

Module – 2

Title:	Measurement of power and energy Measurement of power factor and frequency	Appr Time:	10 Hrs
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Demonstrate measurement of energy using energy meter and calibrate the	CO3	L4
	error by compare with standard values.		
2	Analyze the measurement of power factor, frequency by using dynamo meter	CO4	L3
	and Weston frequency meter.		
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
11	Torque expression, Errors and minimization	CO3	L4
12	UPF and LPF wattmeters	CO4	L3
13	Measurements of real and reactive power in 3 phase circuits	CO3	L4
14	Review of Induction type energy meter construction and operation (No	CO4	L3
15	question shall be set norm the review portions).	<u> </u>	
15	Problems	$\frac{003}{004}$	
10	Problems.	$\frac{CO4}{CO2}$	
1/	Construction and operation of single-phase power factor meter.	<u> </u>	
10	Moston frequency motor	<u> </u>	
19	Desso soquence indicator	<u>CO3</u>	
20	Filase sequence indicator.	004	L3
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Weston frequency meter are used to measure the frequency	CO3	L3
2	single-phase power factor meter are used to measure the power factor	CO4	L4
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Explain with the help of neat sketch, construction and working of induction	CO4	L3
2	Explain the adjustments done in energy meter to read accurately	CO2	14
2	How overload and voltage compensations are provided in energy meters?	<u> </u>	L4 12
5	Explain.	004	L3
4	With a neat diagram explain LPF wattmeter	CO4	L3
5	Explain electrodynamometer type wattmeter	CO3	L4
6	Explian errors and minimisaton in electrodynamometer	CO3	L4
7	Explain weston frequency meter	CO4	L3
8	Explain phase sequence indicator	CO4	L3
9	Explain single phase power factor meter	CO4	L3
10	Derive torque equation of a single phase electrodynamometer type	CO3	L3
11	With a next diagram explain two wattmeter method of measuring power	COa	
	when a near diagram explain two watcherer method of measuring power	003	∟4

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs Code:	18EE36	Sem:		Marks:	50	Time:	90 minutes
Course:	Electrical ar	nd Electronia	cs Measurer	nents			

-	-	Note: Answer all questions, each carry equal marks. Module : 1, 2	Marks	СО	Level
1	а	Define sensitivity of Wheatstone bridge and obtain the expression for sensitivity of Wheatstone bridge.	CO1	L2	8
	b	Draw the circuit of a Kelvin's double bridge used for the measurement of low resistances. Derive the condition for balance.	CO1	L2	6
	С	The four arms of the Wheatstone bridge have the following resistances AB=1000 Ω , BC=1000 Ω , CD=120 Ω , DA=120 Ω . The bridge is used for strain measurement and supplied from 5V ideal battery. The galvanometer has sensitivity of 1mm/ μ A with internal resistance of 200 Ω . Determine the deflection of the galvanometer if arm DA increases to 121 Ω and arm CD decreases to 119 Ω .	CO1	L3	7
	d	Explain sources and detectors in a.c. bridges	CO2	L1	4
		OR			
2	а	With neat circuit diagram, explain the operation of modified Desautys bridge. Also draw the phasor diagram.	CO2	L2	8
	b	With a neat diagram, explain the working of a Megger, used for the measurement of earth resistance.	CO1	L2	7
	С	With neat circuit diagram derive the balancing equation for Maxwell Inductance Capacitance bridge.	CO2	L2	5
	d	Explain the limitations of Wheatstone bridge.	CO1	L1	5
3	а	Explain the construction and working principle of electrodynamometer wattmeter for the measurement of power in the circuit.	CO3	L2	8
	b	Discuss the errors and their compensating techniques used in dynamometer wattmeter.	CO3	L3	6
	С	Derive the torque equation of single phase electrodynamometer wattmeter.	CO3	L3	6
	d	With a neat sketch explain the operation of Weston frequency meter.	CO4	`L2	5
		OR			
4	а	Explain the construction and working principle of single phase induction type energy meter. What are the adjustments required for error calibration?	CO4	L2	10
	b	With the neat phasor diagram explain the measurement of real power in 3 phase circuits.	CO4	L3	8
	С	Explain the construction and working of a LPF wattmeter.	CO3	L3	7

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions											
Crs C	ode:	18EE36	Sem:		Marks:	10	Time:	90 - 120	– 120 minutes			
Course: Electrical and Electronics Measurements Module : 1, 2												
Note	: Each	student	to answer 2-3	3 assignm	ents. Each as	signment car	ries equal ma	ark.				
SNo		USN		Ass	signment Des	cription		Marks	CO	Level		
1	1KT18	BEE001	Give classific	cation of	measuring in	struments or	n the basis o	of 10	CO1	L2		
			operating pri	nciple.								
2	1KT18	BEE002	Explain the v	vorking p	rinciple of A.	C. potentiom	eter. State th	ie 10	CO2	L3		
			application o	f AC pote	entiometer							
3	3 1KT18EE003 Describe construction and working of PMMC instrument.				10	CO1	L2					
4	1KT18	BEE004	State and ex	plain erro	rs in inductior	n watt hour m	neter	10	CO2	L3		
5	1KT18	BEE006	Describe co	nstructior	n and workir	ng of a pha	ase sequenc	e 10				
			indicator									
6	1KT17	7EE001	Explain the	measurer	ment of three	e phase pov	ver using tw	'O 10	CO1	L2		
			watt meter n	nethod wi	th necessary	diagrams						
7	Diplo	ma	Calculate the	e total po	wer and read	ing of the tw	o wattmeter	's 10	CO1	L3		
			connected to	o measur	e power in 3-	phase balan	ce load, if th	e				
			reactive pow	er is 15 K	VAr and load	power factor	is 0.8 lagging	g.				
8	Diplo	ma	Write a short	t note on	single phase	electrodyna	nometer typ	e 10	CO2	L4		
			power factor	meter.								

9	Diploma	Explain construction and working principle of operation of induction type wattmeter	10	CO2	L4
10	Diploma	The expression for Eddy currents produced in a metallic former moving in the field of a permanent magnet is found as $I = \frac{kBlbA}{(2b+l)\rho}$ where B= flux density, I =length of former b=width of former A=area of former ρ = resistivity of former k=constant It is suspected that term anguler velocity is missing I the expression. Using LMTI system of dimensional analysis find the error.	10	CO3	L4
11	Diploma	A Kelvin double bridge has each of the ratio arm $P=Q=p=q=1000\Omega$. The e.m.f of the battery is 100V and a resistance of 5 Ω is included in the battery circuit. The galvanometer has a resistance of 500 Ω and the resistance of the link, connecting the unknown resistance to the standard resistance may be neglected. The bridge is balanced when the standard resistance S=0.001 Ω .	10	CO4	L3
12	1KT18EE001	Explain with the help of neat sketch, construction and working of induction type energy meter	10	CO3	L4
13	1KT18EE002	Explain the adjustments done in energy meter to read accurately.	10	CO4	L3
14	1KT18EE003	How overload and voltage compensations are provided in energy meters? Explain.	10	CO3	L4
15	1KT18EE004	What is creep in enegy meter and how to overcome it	10	CO3	L4
16	1KT18EE006	A 230 V, single phase watt-hour meter has a constant load of 4A passing through it for 6 hours at unity p.f., if the meter disc makes 2208 revolutions during this period what is the meter constant in revolution/KWh? Calculate the p.f of the load if the number of revolutions made by the meter are 1472 when operating at 230V,5A for 4 hours	10	CO4	L3
17	1KT17EE001	A 259 volts,1- φ energy meter has constant load of 6 amps passing through it for 8 hours at 0.75 pf. If the disc makes 3200 revolution during this period, what is the energy meter constant in revolutions/kilowatt hour? Calculate the power factor of the load, if the number of revolutions made by energy meter is 600, when operating at 250 volts, 6 amps for 2 hours.	10	CO3	L4
18	Diploma	For a 20A, 230V energy meter, the revolutions per kilowatt- hour is 480. If upon test at full load UPF the disc makes 40 revolutions in 66 seconds, calculate the error.	10	CO4	L3

D2. TEACHING PLAN - 2

Module - 3

Title:	Performance of transmission lines	Appr	12 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Illustrate the extension ranges of instrument by instrument transformer.	CO5	L2
2	Apply the magnetic measurement of flux using magnetic meter.	CO6	L3
b	Course Schedule		
Class No	Portion covered per hour	-	-
21	Desirable features of ammeters and voltmeters.	CO5	L3
22	Shunts and multipliers.	CO5	L4
23	Construction and theory of instrument transformers	CO5	L1
24	Desirable characterises, Errors of CT and PT	CO5	L3

25	Turns compensation, Illustrative examples,	CO5	L2
26	Silsbee's method of testing CT.	CO6	L1
27	Introduction, Measurement of flux/ flux density	CO6	L3
28	Magnetising force and leakage factor. Hopkinson permeameter.	CO6	L2
29	Measurement of iron loss by wattmeter method.	CO6	L4
30	A brief discussion on measurement of air gap flux and field strength.	CO6	L3
С	Application Areas	-	-
-	Students should be able employ / apply the Module learning to	-	-
1	Silsbee's method used of testing Current Transformers	CO5	L3
2	Instrument transformers are used to measure high voltage and current.	CO6	L4
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Explain clearly how shunts and multipliers are used to extend the range of instruments	CO5	L1
2	A moving coil instrument gives a full scale deflection for a current of 20 mA with a potential difference of 200 mV across it. Calculate a. Shunt required to use it as an ammeter to get arrange of 0-200A b. Multiplier required to use it as a voltmeter of range 0-500V.	CO6	L3
3	A moving coil ammeter has the coil circuit resistance of 1000Ω. The range of the ammeter is 0500µA. Calculate the value of shunt resistance to give a full scale deflection with a current of i) 10mA; ii) 75mA. Find the value of shunt resistance if 40% deflection is obtained with a current of100 mA.	CO5	L2
4	Explain the construction of CT and PT with necessary phasor diagrams.	CO6	L4
5	Compare current transformer and potential transformer.	CO5	L2
6	Draw the equivalent circuit and vector diagram of a current transformer and	CO6	L5
	hence write the expressions for its ratio error and phase angle errror.		
7	Write a note on turns compensation used in current transformer	CO5	L2
8	Briefly explain different errors in current transformer.	CO6	L3
9	Write the advantages of CT and PT over shunts and multipliers.	CO5	L4
10	Define the following terms with respect to instrument transformer: a. Transformation ratio(R) b. Nominal ratio(kn) c. Ratio correction Factor.	CO6	L1
11	A current transformer with a bar primary has 500 turns in the secondary winding. The secondary circuit burden is (2+j1) Ω with 5A flowing in the secondary winding, the magnetizing mmf is 80A and iron loss is 1.6W. Determine the ratio and phase angle errors. Find also the maximum value of the flux density in the core.	CO5	L4
12	A 1000/5A, 50 Hz current transformer has a bar primary and a rated secondary burden of 15VA. The secondary winding has 195 turns and a leakage reactance of 0.96 mH. The load burden is purely resistive. At rated load, the magnetization mmf is 20A and core loss excitation is 12 A. Find the ratio and phase angle errors.	CO5	
~	Exportioneos		
e		-	-
		000	LZ
2 2			
<u> </u>		C06	13
5			

Module – 4

Title:	Corona and underground cable	Appr	13 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Apply the principle and working of Electronic meter	C07	L3
2	Analyze the measurement of voltage by using digital meter.	CO8	L2

b	Course Schedule		
Class No	Portion covered per hour	-	-
31	Introduction. Essentials of electronic instruments	CO7	L3
32	Advantages of electronic instruments. True rms reading voltmeter	CO8	L2
33	Electronic multimeters.	CO7	L3
34	Digital voltmeters (DVM) - Ramp type DVM,	CO8	L2
35	Integrating type DVM,	C07	L3
36	Continuous – balance DVM.	CO8	L2
37	Successive - approximation DVM	C07	L3
38	Q meter and problems	CO7	L3
39	Principle of working of electronicenergy meter (block diagram treatment),	CO8	L2
40	Extra features offered by present day meters and their significance in billing	C07	L3
С	Application Areas	-	-
-	Students should be able employ \checkmark apply the Module learnings to	-	-
1	significance in billing by present day smart meters	CO7	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	With a neat sketch, describe true R.M.S voltmeter.	CO7	L1
2	Write the asdvantages of electronic instruments over conventional instrument	CO7	L3
3	Explain electronic multimeter with a neat diagram	CO8	L2
4	Write the advantages of electronic voltmeter	CO7	L4
5	Explain ramp typr and successive approximation type digital voltmeter	CO8	L2
6	Expain integrating type voltmeter	CO8	L5
7	Derive the relevant measurement w.r.t Q meter while measuring high	CO7	L2
	impedance component in parallel connection.		
8	Explain with a circuit, the determination of the distributed capacitance of the	CO8	L3
		00-	1
9	A coll with a resistance of 12 Ω is connected across the test terminals of a Q-	C07	L4
	meter circuit and resonance occurs when the frequency of the oscillator is		
	1000 KHZ and the capacitance of resonaling capacitor is 75pl. Calculate the		
	resistance of 0.020 percess the assillator		
10	With a post skotch evolution electronic operations	<u> </u>	10
10	with a near sketch explain electionic energymeters	000	∟კ
P	Experiences	_	_
		C07	2
2		/	<u> </u>
2			
4		CO8	L٦
5			0

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs		18EE36	Sem:	111	Marks:	50	Time:	90 minute	es		
Cod	e:										
Cou	rse:	Electrical a	Electrical and Electronics measurement								
-	-	Note: Answ	Note: Answer all questions, each carry equal marks. Module : 3, 4							Level	
1	а	Explain the RAMP type and successive approximation type digitation voltmeters.						ital CO7	L3	7	
	b	With a neat sketch, explain the construction and working of Q meter.							L4	7	
	С	With a neat diagram explain electronic Energymeter.						CO8	L4	7	
	d	List the advantages of Instrument transformers.					CO5	L2	4		
		OR									

2	а	Explain with a neat diagram, working principle of true RMS voltmeter.	CO8	L3	7
	b	Explain the principle of operation of electronic multi-meter.	CO8	L4	8
	С	What are the advantages of electronic instruments over conventional	CO7	L2	5
		meters.			
	d	Compare Current Transformer and Potential Transformer.	CO6	L2	5
3	а	Explain silsbee's method of testing a current transformer.	CO6	L3	10
	b	Explain the measurement of leakage factor using search coil .	CO6	L4	5
	С	What is shunt? How it is used to extend the range of an ammeter?	CO5	L3	5
	d	Write a note on turns compensation method used in instrument	CO6	L3	5
		transformer.			
		OR			
4	а	Explain the current transformer with the help of an equivalent circuit	CO6	L4	10
		diagram and a phasor diagram. Write expression for ratio error and phase			
		angle error.			
	b	Define the terms with reference to a current transformer	CO5	L3	5
		i) Transformation ratio ii) Nominal ratio			
		iii) Turns ratio iv) Ratio correction factor			
	С	What is Multiplier? How it is used to extend the range of a volmeter?	CO5	L3	5
	d	Describe the method of experimental measurement of flux density in a	CO6	L4	5
		specimen of magnetic material using ballistic galvanometer.			

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions												
Crs C	ode:	18EE36	Sem:	IV	Mar	KS:	10	Time	e:	90 -	120 r	minutes	5
Cours	se:	Electrica	l and Electro	onics me	easuremer	nt							
Note	Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.												
SNo	SNo USN Assignment Description					Ma	arks	СО	Level				
1	1KT18	BEE001	Mention th	ne adva	intages c	of elec	tronic	instrume	nts ove	ər 1	10	CO7	L2
conventional instruments.													
2	1KT18	BEE002	A moving a	coil instr	ument gi	ves a f	ull sca	le deflect	ion for	a 1	10	CO6	L3
			current of 2	0 mA wi	ith a potei	ntial diff	erence	e of 200 m	nV acros	SS			
			it. Calculate	a. Shu	nt require	d to use	e it as	an amme	ter to ge	et			
			arrange of	0-200A	A b. Mult	iplier r	equire	d to use	it as	а			
			voltmeter o	f range (D-500V.								
3	1K 18	BEF003	A moving	coil am	meter ha	s the	COIL CI	rcuit resis	stance of	of 1	10	CO6	L4
			1000Ω. The	range	of the am	imeter	IS 050	opa. Calc	ulate tr	ie			
			value of shi	unt resis	tance to (give a ri	ul sca		on with	a			
			if 40% doflo	10MA, I	1) /5MA. F	ina trie vith a ci	value	of shunt n	esistanc	e			
4	11/11	REEDON	Fyplain the	cuonis (iction of C	T and			ny phacy			006	
4	TULITO	JLL004	diagrams	CONSUL				THECESSA	ry priaso			000	∟3
5	1KT18	REE006	Compare ci	Irrent tra	ansformer	and no	tential	transform	ner	1	10	COF	12
6	1KT17	7EE000	Draw the e	auivaler	nt circuit a	and ver	tor dia	aram of		nt 1		CO6	
			transformer	and he	nce write	the evr	ressio	ns for its r	a currer	נ או רר		000	
			and phase a	angle err	ror.		100010						
7	Diplo	ma	Write a	note or	n turns o	comper	sation	used in	curre	nt 1	10	CO6	3
'	1		transformer										_0
8	Diplo	ma	Briefly expla	ain differ	ent errors	in curre	ent trai	nsformer.		1	10	CO5	L3
9	Diplo	ma	Write the	advanta	ages of	CT an	d PT	over shu	unts ar	nd 1	10	CO5	L2
			multipliers.										
10	Diplo	ma	Define the	follow	ing term	s with	respe	ect to in	Istrumei	nt 1	lo	CO5	L2
			transformer	: a. Trar	nsformatio	n ratio	R) b. 1	Nominal ra	atio(kn)	C.			
			Ratio correc	ction Fac	tor.								
11	Diplo	ma	A current tr	ansform	er with a	bar prir	nary h	as 500 tui	rns in th	ie 1	10	CO5	L3
			secondary	winding.	The sec	ondary	circuit	: burden i	s (2+j1)	Ω			
			with 5A flo	wingin	the seco	ndary v	winding	g, the ma	gnetizin	Ig			
			mmf is 80A	A and ir	on loss is	5 1.6W.	Deterr	mine the	ratio an	ld			

		phase angle errors. Find also the maximum value of the flux density in the core.			
12	1KT18EE001	A 1000/5A, 50 Hz current transformer has a bar primary and a rated secondary burden of 15VA. The secondary winding has 195 turns and a leakage reactance of 0.96 mH. The load burden is purely resistive. At rated load, the magnetization mmf is 20A and core loss excitation is 12 A. Find the ratio and phase angle errors.	10	CO5	L3
13	1KT18EE002	With a neat sketch, describe true R.M.S voltmeter.	10	CO7	L4
14	1KT18EE003	With a neat sketch, explain the construction and working of electro dynamometer type 1- Φ power factor meter.	10	CO5	L4
15	1KT18EE004	Compute the value of distributed capacitance of a coil when the following measurements were made. At frequency f1= 2 MHz, the tuning capacitor is set at 450 pf. When the frequency is increased to 5 MHz, the tuning capacitor is tuned at 60 pf.	10	CO6	L3
16	1KT18EE006	Explain the two types of phase sequence indicators.	10	CO5	L3
17	1KT17EE001	Derive the relevant measurement w.r.t Q meter while measuring high impedance component in parallel connection.	10	CO6	L3
18	Diploma	Explain with a circuit, the determination of the distributed capacitance of the Q-meter	10	CO6	L3
19	Diploma	A standard coil is connected across the terminals of Q meter and resonance is obtained, when the frequency of the supply is 160 KHz and the value of the resonant capacitor is 200 pf and the Q factor read is 80. An unknown impedance is connected in series with the standard coil and the resonance is obtained when the value of the resonant capacitor is 180 pf and Q factor read is 50, frequency of the supply being the same. Calculate the inductance and resistance of the coil.	10	CO6	L2
20	Diploma	A coil of resistance 10 Ω is connected in the Q meter circuit. Resonance occurs at a frequency of 1 MHz with the tuning capacitor set at 65 pf. Calculate the percentage error introduced in the calculated value of Q if a resistance of 0.02 Ω is used across the oscillator circuit.	10	CO6	L3
21	Diploma	Explain the principle of operation of electronic multi-meter.	10	CO8	L3
22	Diploma	A digital voltmeter is used on a 41/2 digit display. Find its resolution. How would 11.87 V be displayed on a 10V range? Also how would 0.5573 be shown on a 1V and 10 V range?	10	CO7	L3
23	1KT18EE001	With the help of the block diagram explain Ramp type digital voltmeter.	10	CO7	L4
24	1KT18EE002	Explain digital voltmeter using successive approximation method.	10	CO8	L3

D3. TEACHING PLAN - 3

Module – 5

Title:	Display Devices, Recording Devices	Appr	10 Hrs
		Time:	
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Demonstrate the display devices of LED,LCD, liquid vapour devices.	CO9	L2
2	Illustrate the working of recording devices .	CO10	L4
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
41	Introduction, Character formats	CO9	L2
42	Segment displays, Dot matrix displays	CO10	L4
43	Bar graph displays. Cathode ray tubes,	CO9	L2
44	Light emitting diodes, Liquid crystal displays	CO10	L4

45	Nixes, Incandescent, Fluorescent Liquid vapour and Visual displays	CO9	L2
46	display multiplexing and zero suppression.	CO10	L4
47	introduction, Strip chart recorders, Galvanometer recorders, Null balance	CO9	L2
	recorders, Potentiometer type recorders		
48	Bridge type recorders, LVDT type recorders, Circular chart and X – Y	CO10	L4
	recorders.		
49	Magnetic tape recorders, Direct recording, Frequency modulation recording,	CO9	L2
50	Pulse duration modulation recording, Biomedical recorders, Electro Cardio	CO10	L4
	Graph (ECG)		
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Recording devices can be used in aircraft recorders, tape recordings	COg	L4
2	Display devices are employed in television sets and computes	CO10	L2
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Explain with a block diagram, working of digital storage oscilloscope.		
2	Explain the measurement of phase and frequency using Lissajous patterns	CO10	L1
3	Explain in brief front panel details of a dual trace oscilloscope	CO10	L3
4	With a neat block diagram, explain the working of a digital storage	COg	L2
	oscilloscope.		
5	With a neat block diagram, explain the working of dual trace oscilloscope	CO9	L4
6	Explain the method of measuring voltage, current and phase using oscilloscope.	CO9	L2
7	Write a brief note on current probes.	COg	L5
8	A Lissaious pattern on an oscilloscope is stationary and has 5 horizontal	COg	L2
	tangencies and 2 vertical tangencies. The frequency of horizontal input is 1000		
	Hz. Determine the frequency of vertical input.		
9	Explain with neat sketch the working of the LVDT.	COg	L3
10	What do you mean by DAS(Data Acquisition System)? Explain with a block	CO10	L4
	diagram, functional operation of digital data acquisition system. Mention the		
	uses of data acquisition system.		
11	Explain briefly the difference between analog and digital data acquisition	CO10	L1
	system?		
12	With a neat sketch, explain the working of a X-Y recorder.	CO10	L2
13	Explain with a neat diagram, the working of function generator.	CO10	L3
14	Write a note on following display device. a. LCD, b. LED c. Nixie Tube	CO10	L4
15	With block diagram, explain the working of standard signal generator.	CO10	L1
е	Experiences	-	-
1		CO10	L2
2		CO9	
3			
4		CO9	L3

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs	Code:	18EE36	Sem:	111	Marks:	50	Time:	90minute	es	
Cou	rse:	Electrical ar	nd electroni	cs Measurer	ment					
-	-	Note: Answ	te: Answer all questions, each carry equal marks. Module : 5						CO	Level
1	a	Explain in b	Explain in brief front panel details of a dual trace oscilloscope.						CO9	L1
	b	With a neat block diagram, explain the working of a digital storage							CO9	L2
		oscilloscope.								
	С	A Lissajous	pattern on	an oscilloso	ope is stat	ionary and	has 5 horizoi	ntal 8	CO9	L3
		tangencies	and 2 vertic	al tangencie	es. The frec	luency of h	norizontal inpu	ıt is		

		1000 Hz. Determine the frequency of vertical input.			
2	а	Explain the working principle and constructional details of photo conductive and photo voltaic cell.	10	CO9	L2
	b	Explain with neat sketch the working of the LVDT.	8	CO9	L4
	С	Write a brief note on current probes.	7	CO9	L3
3	а	What do you mean by DAS(Data Acquisition System)? Explain with a block diagram, functional operation of digital data acquisition system. Mention the uses of data acquisition system.	10	CO10	L1
	b	With a neat sketch, explain the working of a X-Y recorder.	8	CO10	L2
	с	With a neat block diagram, explain the working of dual trace oscilloscope	7	CO10	L3
4	a	Write a note on following display device. a. LCD, b. LED c. Nixie Tube	7	CO10	L2
	b	With block diagram, explain the working of standard signal generator.	10	CO10	L2
	с	Explain with a neat diagram, the working of function generator.	8	CO10	L2

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

				M	odel Assigni	ment	Questi	ons			
Crs C	ode:	18EE36	Sem:		Marks	:	10	Time:	90 - 120	minute	S
Cours	se:	Electrica	and electro	nics Me	asurement		Modul	e:5			
Note	: Each	student	o answer 2-	3 assigr	iments. Eacl	h assi	gnmen	t carries equal ma	ark.		
SNo		USN		A	ssignment	Desc	ription		Marks	СО	Level
1	1KT18	BEE001	Explain witl oscilloscope	xplain with a block diagram, working of digital storage scilloscope.						CO9	L2
2 1KT18EE002		BEE002	Explain the measurement of phase and frequency using Lissajous patterns						g 10	CO9	L3
3	1KT18	BEE003	Explain in br	ief front	panel detai	ils of a	a dual t	race oscilloscope	9 10	CO10	L4
4	1KT18	BEE004	With a neat storage osci	: block lloscope	diagram, e> ə.	xplain	the w	orking of a digita	al 10	CO10	L3
5	1KT18	1KT18EE006 With a neat block diagram, explain the working of dual trace oscilloscope					e 10	CO9	L2		
6	1KT17EE001 Explain the method of measuring voltage, current and phase using oscilloscope.					e 10	CO10	L2			
7	Diplo	ma	Write a brief	note or	n current pro	obes.			10	CO9	L2
8	8 Diploma A Lissajous pattern on an oscilloscope is stationary and has horizontal tangencies and 2 vertical tangencies. The frequency of horizontal input is 1000 Hz. Determine the frequency of vertical input					5 10 e e	CO10	L3			
9	Diplo	ma	Explain with	neat sk	etch the wo	orking	of the	LVDT.	10	CO9	L3
10	Diplo	ma	What do yo with a bloc acquisition system.	u mean :k diagr system.	by DAS(Dat am, functic Mention 1	ta Aco onal α the ι	quisition operation uses o	n System)? Explai on of digital dat f data acquisitio	n 10 a n	CO10	L3
11	Diplo	ma	Explain briet acquisition s	fly the d system?	lifference be	etwee	en anale	og and digital dat	a 10	CO10	L2
12	1KT18	BEE001	With a neat	sketch,	explain the	worki	ng of a	X-Y recorder.	10	CO9	
13	1KT18	BEE002	Explain wit generator.	h a n	eat diagrar	m, th	ne wo	rking of functic	n 10	CO10	L3
14	1KT18	BEE003	Write a not Nixie Tube	e on fo	llowing disp	play (device.	a. LCD, b. LED	C. 10	CO10	L2
15	1KT18	BEE004	With block generator.	diagran	n, explain tł	he wo	orking	of standard signa	al 10	COg	L3

F. EXAM PREPARATION

1. University Model Question Paper

Course:		Electrical and electronics Measurement Month	/ Year	May /	2019
Crs C	ode:	18EE36 Sem: III Marks: 60 Time:		180 mi	inutes
Mod	Note	Answer all FIVE full questions. All questions carry equal marks.	со	Level	Mark
ule					S
1	а	Define sensitivity of Wheatstone bridge and obtain the expression fo	r CO1	L2	8
	la	sensitivity of wheatstone bridge.	£ 004		6
	D	Draw the circuit of a Ketvin's double bridge used for the measurement of			0
	6	The four arms of the Wheatstone bridge have the following resistance	CO1	12	7
		AB=1000 0 BC=10000 CD=120 0 DA=120 0 The bridge is used for strai		L-2	/
		measurement and supplied from 5V ideal battery. The galvanometer ha	s		
		sensitivity of 1mm/ μA with internal resistance of 200 Ω . Determine the	e		
		deflection of the galvanometer if arm DA increases to 121 Ω and arm CI	D		
		decreases to 119Ω.			
	d	Explain sources and detectors in a.c. bridges	CO2	L1	4
		OR			
1	а	Derive balance equation for Maxwell's Inductance –Capacitance bridge	e. CO2	L2	10
	L.	Draw the phasor diagram at balance condition .			
	b	A condenser bushing forms arm AB of a Schering bridge and a standard		L2	10
		capacitor of 500pt capacitance and negligible loss forms AD. Ann by			
		balanced arm CD has resistance of 72.60 in parallel with capacitance of	5 f		
		0.148µf. The supply frequency is of 50 Hz. Calculate the capacitance and	L		
		dielectric loss angle of capacitor.			
	С	Explain fall of potential method for measuring earth resistance	CO1	L2	5
2	а	Explain the construction and working principle of electrodynamomete	r CO3	L2	8
		wattmeter for the measurement of power in the circuit.			
	b	Discuss the errors and their compensating techniques used in dvnamometer wattmeter.	n CO3	L3	6
	С	Derive the torque equation of single phase electrodynamomete	r CO3	L3	6
		wattmeter.			
	d	With a neat sketch explain the operation of Weston frequency meter.	CO4	`L2	5
		OR			
2	а	Explain the construction and working principle of single phase induction	1 CO4	L2	10
		type energy meter. What are the adjustments required for errc	r		
		calibration?		<u> </u>	
	b	With the neat phasor diagram explain the measurement of real power in	n CO4	L3	8
		3 phase circuits.	0.01		
	С	Explain the construction and working of a LPF wattmeter.	CO3	L3	/
2	a	Explain the RAMP type and successive approximation type digita		2	7
5	u	voltmeters			'
	b	With a neat sketch, explain the construction and working of Q meter.	CO7	L4	7
		······································	,		
	С	With a neat diagram explain electronic Energymeter.	CO8	L4	7
	d	List the advantages of Instrument transformers.	CO5	L2	4
		OR			
3	a	Explain with a neat diagram, working principle of true RMS voltmeter.	CO8	L3	7
	b	Explain the principle of operation of electronic multi-meter.	CO8	L4	8
	С	What are the advantages of electronic instruments over conventiona		L2	5
	<u>ہ</u>	(THELETS. Compare Current Transformer and Detential Transformer	COF	10	
<u> </u>	u				
4	a	Explain silsbee's method of testing a current transformer.	C06	L3	10

	b	Explain the measurement of leakage factor using search coil .	CO6	L4	5
	С	What is shunt? How it is used to extend the range of an ammeter?	CO5	L3	5
	d	Write a note on turns compensation method used in instrument	CO6	L3	5
		transformer.			
		OR			
4	а	Explain the current transformer with the help of an equivalent circuit diagram and a phasor diagram. Write expression for ratio error and phase angle error.	CO6	L4	10
	b	Define the terms with reference to a current transformer i) Transformation ratio ii) Nominal ratio iii) Turns ratio iv) Ratio correction factor	CO5	L3	5
	С	What is Multiplier? How it is used to extend the range of a volmeter?	CO5	L3	5
	d	Describe the method of experimental measurement of flux density in a specimen of magnetic material using ballistic galvanometer.	CO6	L4	5
5	а	Explain in brief front panel details of a dual trace oscilloscope.	7	CO9	L1
	b	With a neat block diagram, explain the working of a digital storage oscilloscope.	10	CO9	L2
	С	A Lissajous pattern on an oscilloscope is stationary and has 5 horizontal tangencies and 2 vertical tangencies. The frequency of horizontal input is 1000 Hz. Determine the frequency of vertical input.	8	CO9	L3
		OR			
5	а	Explain the working principle and constructional details of photo conductive and photo voltaic cell.	10	CO9	L2
	b	Explain with neat sketch the working of the LVDT.	8	CO9	L4
	С	Write a brief note on current probes.	7	CO9	L3

2. SEE Important Questions

Cours	ourse: Transmission and Distribution Month /						/ Year	May /	2018	
Crs C	ode:	17EE43	Sem:	IV	Marks:	60	Time:		180 m	inutes
	Note	Answer all I	FIVE full question	ns. All questic	ons carry equ	ial marks.		-	-	
Mod	Qno.	Important C	Question					Marks	со	Year
1	1	With a nea	t sketch explain t	the working c	of a megger			CO2	L3	July/ Aug 2004
	2	Explain the	xplain the fall of potential of measurement of earth resistance							July/ Aug 2005
	3	Derive the expression for the measurement of unknown resistance using Kelvin's double bridge. How the effect of connecting lead resistance is eliminated in this arrangement					CO2	L3	Jan / Feb 2005, July/ Aug 2006	
	4	4 Write short notes on Megger						CO2	L3	July/ Aug 2008
	5	Explain hov	v a megger is use	ed for the me	asurement o	f earth resista	ance	CO2	L3	July/ Aug 2007
	6	Define voli expression maximum?	tage sensitivity for whets	of a galvar tone's bridg	nometer and ge sensitivity	d hence ob v. When will	tain an be Sb	CO1	L2	Jan / Feb 2008
	7	State and e	aximum? ate and explain sensitivity of whetstone's bridge?							Jan/ Feb 2012,

					July/ Aug
	8	Explain maxwell's bridge?	CO1	L2	une/ July2
	9	Explain kelvin's bridge?	CO1	L2	Dec/ Jan20
	10	Explain the importance of Wheatstone bridge?	CO1	L2	May/ June
	11	4. Explain the Capacitance Comparison Bridge?	CO1	L2	Dec/ Jan20
	12	Explain the Maxwell's bridge?	CO1	L2	June /July
	13	Write a short note on the Wagner earthing device	CO2	L3	2004
	14	Explain the Wagner's earth connection?	CO2	L3	Dec/ Jan0 8 2012
	15	Deriving equation for resistance is Hay's bridge, the following expression is obtained. R = w2R1R2e2/ 1+w2R22C Find whether the equation is dimensionally correct or not. Incase there is an error find the error and correct equation accordingly	CO2	L3	Jan/ Feb 2012
	16	Derive the balance equations of the Schering bridge circuit configuration used for measurement of capacitances and hence derive at the expression for loss angle of the test capacitor. Draw the phasor diagram at balance.	CO2	L3	July/ Aug 2004, Jan/ Feb- 2008
	17	Derive the expression for the measurement of capacitance and loss angle of a lossy capacitor using Schering bridge. Draw the phasor diagram at balance condition. What modifications are introduced when the bridge is used at high voltages			Jan/ Feb- 2005, July/ Aug
	18	Write briefly on the significance of shields used in ac bridge circuit. Hence discuss on the shielding of resistors and capacitors of the circuit			July/ Aug 2005, Jan/ Feb
<u></u>	19	Draw a neat sketch to explain the theory and measurement of unknown inductance and resistance by Anderson bridge. What is type of null detector used in this bridge? What are the sources of errors? Draw phasor diagram at balance			July/ aug 2006, 2006, 2012
	20	Write short notes on source and detectors			July /Aug 2008,
2	1	Explain the construction of CT and PT with necessary phasor diagrams	16 / 20		July/ Aug 2007
	2	A moving coil instrument gives a full scale deflection for a current of 20			Jan /

		mA with a potential difference of 200 mV across it. Calculate a. Shunt required to use it as an ammeter to get arrange of 0-200A b. Multiplier required to use it as a voltmeter of range 0-500V.		Feb 2008
	3	A moving coil ammeter has the coil circuit resistance of 1000Ω. The range of the ammeter is 0500µA. Calculate the value of shunt resistance to give a full scale deflection with a current of i) 10mA; ii) 75mA. Find the value of shunt resistance if 40% deflection is obtained with a current of100 mA.		Jan/ Feb 2012, July/ Aug 2008
	4	Explain clearly how shunts and multipliers are used to extend the range of instruments.		une/ July2 009
	5	Define the following terms with respect to instrument transformer: a. Transformation ratio(R) b. Nominal ratio(kn) c. Ratio correction Factor.		Dec/ Jan20 08
3	1	Explain with a neat figure, construction and working of dynamometer type wattmeter.	16 / 20	Dec/ Jan20 10
	2	Explain with the help of neat sketch, construction and working of induction type energy meter.		June /July 2009
	3	Explain the adjustments done in energy meter to read accurately		2004
	4	A 259 volts,1- φ energy meter has constant load of 6 amps passing through it for 8 hours at 0.75 pf. If the disc makes 3200 revolution during this period, what is the energy meter constant in revolutions/kilowatt hour? Calculate the power factor of the load, if the number of revolutions		Dec/ Jan0 8, Jan/
		made by energy meter is 600, when operating at 250 volts, 6 amps for 2 hours.		Feb 2012
	5	For a 20A, 230V energy meter, the revolutions per kilowatt-hour is 480. If upon test at full load UPF the disc makes 40 revolutions in 66 seconds, calculate the error.		July/ Aug 2007
4	1	With a neat sketch, describe true R.M.S voltmeter.	16 / 20	Jan/ Feb 2012, 2008
	2	Explain the two types of phase sequence indicators.		une/ July2 009
	3	Derive the relevant measurement w.r.t Q meter while measuring high impedance component in parallel connection.		Dec/ Jan20 08
	4	A Lissajous pattern on an oscilloscope is stationary and has 5 horizontal tangencies and 2 vertical tangencies. The frequency of horizontal input is 1000 Hz. Determine the frequency of vertical input.		May/ June 2010
	5	A standard coil is connected across the terminals of Q meter and resonance is obtained, when the frequency of the supply is 160 KHz and the value of the resonant capacitor is 200 pf and the Q factor read is 80. An unknown impedance is connected in series with the standard coil and the resonance is obtained when the value of the resonant capacitor is 180 pf and Q factor read is 50, frequency of the supply being the same. Calculate the inductance and resistance of the coil.		Dec/ Jan 2010
	6	A coil with a resistance of 12 Ω is connected across the test terminals of a Q-meter circuit and resonance occurs when the frequency of the oscillator is 1000 KHz and the capacitance of resonating capacitor is 75pf. Calculate the percentage error introduced in the calculated value of Q due to an insertion resistance of 0.02 Ω across the oscillator.		June /July 2009
5	1	With a neat sketch, explain the working of a X-Y recorder.	16 / 20	July/ Aug 2007
	2	What do you mean by DAS(Data Acquisition System)? Explain with a		Jan /
1				

	block diagram, functional operation of digital data acquisition system.	Feb
	Mention the uses of data acquisition system.	2008
3	Write a note on following display device. a. LCD, b. LED	Jan/
		Feb
		2012,
		2008
4	Prove that gauge factor of strain gauge is given by $k= 1+2\mu$, where μ is	june/
	Poission's ratio	July2
		009
5	Explain different strain gauge and their principle of operations.	Dec/
		Jan20
		08

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

Moc	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructi	Assessment
ule-	(Split module content into 2 parts which	Teachin	Learning	Bloo	Action	on	Methods to
#	have similar concepts)	g Hours	Levels	ms'	Verbs for	Methods	Measure
			for	Leve	Learning	for	Learning
			Content	l		Learning	
A	В	С	D	Ε	F	G	Н
1	Measurement of Resistance:	04	- L1	L2	-	-	-Unit Test
	Wheatstone's bridge, Sensitivity, Limitations.		- L2		Rememb	Lecture	
	Kelvin's double bridge. Earth resistance				ering		Assignment
	measurement by fall of potential method				- 		
	and by using Megger.				Explainin		
1	Moscurement of Inductonce and	06	11	12	g		Lipit Tost
1	Capacitance	00	- LI - I 2		- Domomh	- Locturo	
	Sources and detectors Maxwell's		- 62		orina	Lecture	Assianment
	inductance bridge. Maxwell's inductance				-		/ USUGI III CITE
	and capacitance bridge, Hay's bridge,				Explainin		
	Anderson's bridge, Desauty's bridge,				a '		
	Schering bridge. Shielding of bridges.				C		
	Problems.						
2	Measurement of power and energy	06	- L2	L3	-	-	-Unit Test
	Torque expression, Errors and minimization,		- L3		Understa	Lecture	-
	UPF and LPF wattmeters. Measurements of				nding		Assignment
	real and reactive power in 3 phase circuits.				-		
	Review of Induction type energy meter				Calculate		
	construction and operation (No question						
	shall be set from the review portions)] Errors						
	adjustments and calibration of single and						
	three phase operation and three phase and						
	linee phase energy meter Problems.						
2	Measurement of power factor and	04	- 2	12	_	_	-Unit Tost
	frequency Construction and operation of	- 04	-13		Understa	Lecture	-
	single phase and three phase dynamemotor		-5		ndina	-	Assianment
	single-phase and three phase dynamometer				-		, leeligie
	type power factor meter. Weston frequency				Calculate		
	me ter and phase sequence indicator		1 -				
3	Extension of instrument Ranges:	05	- L2	L4	- Linderst-		-Unit Test
	voltmotors Shunts and multipliers		- L4		nding	Lecture	- Accianment
	Construction and theory of instrument				Laing	-	Assignment
	construction and theory of instrument				-		
2	MeasurementofpowerandenergyTorque expression, Errors and minimization, UPF and LPF wattmeters. Measurements of real and reactive power in 3 phase circuits. Review of Induction type energy meter construction and operation (No question shall be set from the review portions)].Errors, adjustments and calibration of single and three phase energy meter Problems.Measurementofpowerfactorand frequency construction and operation of single-phase and three phase dynamometer type power factor meter. Weston frequency me ter and phase sequence indicatorExtensionofInstrument Ranges: Desirable featuresand meters and multipliers. 	06	- L2 - L3 - L2 - L3 - L2 - L3	L3 L3	- Understa nding - Calculate - Understa nding - Calculate - Understa nding -	- Lecture - Lecture - Lecture -	-Unit Te Assignm -Unit Te Assignm -Unit Te Assignm

	of CT and PT. Turns compensation, Illustrative examples, Silsbee's method of testing CT.				g & analyzing		
3	Magneticmeasurements:Introduction, Measurement of flux/ fluxdensity, Magnetising force and leakagefactor.Hopkinsonpermeameter.Measurement of iron loss by wattmetermethod. A brief discussion on measurementof air gap flux and field strength.	05	- L2 - L4	L4	- Understa nding - Explainin g & analyzing	- Lecture -	-Unit Test - Assignment
4	Electronic and digital Instruments: Introduction. Essentials of electronic instruments, Advantages of electronic instruments. True rms reading voltmeter. Electronic multimeters. Digital voltmeters (DVM) - Ramp type DVM,	05	- L1 - L2	L2	- Rememb ering - Explainin g	- Lecture	-Unit Test - Assignment
4	Integrating type DVM, Continuous – balance DVM and Successive - approximation DVM. Q meter Principle of working of electronicenergy meter (block diagram treatment), Extra features offered by present day meters and their significance in billing	05	- L2 - L4	L4	- Understa nding - Explainin g	- Lecture	-Unit Test - Assignment
5	Display Devices: Introduction, Character formats, Segment displays, Dot matrix displays, Bar graph displays. Cathode ray tubes, Light emitting diodes, Liquid crystal displays, Nixes, Incandescent, Fluorescent, Liquid vapour and Visual displays. Display multiplexing and zero suppression.	05	- L2 - L4	L4	- Understa nding - Explainin g	- Lecture -	-Unit Test - Assignment
5	RecordingDevices:Introduction,Stripchartrecorders,Galvanometerrecorders,Nullbalancerecorders,Potentiometertyperecorders,Bridge typerecorders,LVDTtyperecorders,Circularchartand X – Yrecorders.Magnetictaperecorders,Directrecorders.Magnetictaperecorders,Directrecording,Frequencymodulationrecording,Pulsedurationmodulationrecorders,ElectroCardioGraph(ECG),Electroencephalograph,Electromyograph9.Noise inreproduction.	05	- L1 - L2	L2	- Rememb ering - Explainin g	- Lecture -	-Unit Test - Assignment

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

Мо	Learning or	Identified	Final Concept	Concept Justification	CO Components	Course Outcome
dul	Outcome	Concepts		(What all Learning	(1.Action Verb,	
e-	from study of	from		Happened from the	2.Knowledge,	
#	the Content	Content		study of Content /	3.Condition /	Student Should be
	or Syllabus			Syllabus. A short	Methodology,	able to
				word for learning or	4.Benchmark)	
				outcome)		
A	1	J	K	L	М	N

1	Units and Dimensions Measurement of Resistance:	Resistanc e bridge	Resistance bridge	Learning the bridge balancing technique to measure the unknown resistance by fall of potential method and Megger.	1. Demonstrate 2. bridge balancing technique 3.to measure the unknown resistance.	Demonstrate bridge balancing technique to measure the unknown resistance.
1	Measurement of Inductance and Capacitance:	Inductanc e capacitan ce bridges	Inductance capacitance bridges	measurement of Inductance, Capacitor by maxwell's Desautys bridge using null deflection methods and proved by solving the problems.	 Analyze the measurement of Inductance, Capacitor by using maxwell's Desautys bridge. 	Analyze the measurement of Inductance, Capacitor by maxwell's Desautys bridge.
2	Measuremen t of power and energy	Energy meter	Energy meter	Demonstrate measurement of energy using energy meter and calibrate the error by compare with standard values by theoretically and Experimentally.	 Demonstrate measurement of energy using energy meter and calibrate the error by compare with standard values. 	Demonstrate measurement of energy using energy meter and calibrate the error by compare with standard values.
2	Measurement of power factor and frequency	Power factor frequency meter	Power factor frequency meter	measurement of power factor, frequency by using dynamo meter , Weston frequency meter by theoretically and Experimentally.	1. Analyze the 2. measurement of power factor, frequency 3. by using dynamo meter and Weston frequency meter.	Analyze the measurement of power factor, frequency by using dynamo meter and Weston frequency meter.
3	Extension of Instrument Ranges:	Extension Instrumen t range	Extension Instrument range	Study the Desirable features of ammeters and voltmeters. Errors of CT and PT.	1. Illustrate the 2. extension ranges of instrument 3. by instrument transformer.	Illustrate the extension ranges of instrument by instrument transformer.
3	Magnetic measuremen ts:	Magnetic measure ment	Magnetic measuremen t	Apply the magnetic measurement of flux using magnetic meter	 Apply the magnetic measurement of flux using magnetic meter. 	Apply the magnetic measurement of flux using magnetic meter.
4	Electronic and digital Instruments:	Electronic instrumen t	Electronic instrument	principle and working of Electronic meter True rms reading voltmeter, Electronic multimeters.	1. Apply the 2. principle and working of Electronic meter	Apply the principle and working of Electronic meter

4	Integrating type DVM, Continuous – balance DVM and Successive	Digital meters	Digital meters	Analyze the Analyze the Analyze the measurement of measurement of voltage by using 2. measurement of voltage by using digital meter voltage by using digital meter.
5	Display Devices:	Display device	Display device	Demonstrate the 1. Demonstrate Demonstrate the display devices of display devices of LED,LCD, liquid ₂ . the displayLED,LCD, liquid vapour devices. devices of LED,LCD, liquid vapour devices.
5	Recording Devices:	Recording devices	Recording devices	understanding the 1. Illustrate the Illustrate the working of recording 2. working of working of recording devices, Magnetic recording devices . tape recorders, Direct recording.